
34 PROGRAMMING

Using Git to
Manage a Web Site

THE HTML SOURCE for my web site lives in a Git
repository on my local workstation. This article
describes how I set things up so that I can make

changes live by running just git push web.
The one-line summary: push into a remote repository

that has a detached work tree, and a post-receive hook that
runs git checkout -f.

The Local Repository
It doesn’t really matter how the local repository is set up,
but for the sake of argument, let’s suppose you’re starting
one from scratch.

$ mkdir website && cd website

$ git init

Initialized empty Git repository in /home/ams/web-

Anyway, however you got there, you have a repository
whose contents you want to turn into a web site.

The Remote Repository
I assume that the web site will live on a server to which
you have ssh access, and that things are set up so that you
can ssh to it without having to type a password (i.e., that
your public key is in and you are
running ssh-agent locally).

On the server, we create a new repository to mirror the
local one.

$ git init --bare

Initialized empty Git repository in /home/ams/web-

Then we define and enable a post-receive hook that
checks out the latest tree into the web server’s Documen-
tRoot (this directory must exist; Git will not create it for
you):

$ cat > hooks/post-receive

#!/bin/sh

git checkout -f

$ chmod +x hooks/post-receive

By ABHIJIT MENON-SEN

PROGRAMMING

 35

Back on the workstation, we define a name for the remote
mirror, and then mirror to it, creating a new master branch
there.

$ git push web +master:refs/heads/master

On the server, should now
contain a copy of your files, independent of any
metadata.

The Update Process
Nothing could be simpler. In the local repository, just run:

$ git push web

This will transfer any new commits to the remote reposi-
tory, where the post-receive hook will immediately update
the DocumentRoot for you.

(This is more convenient than defining your workstation
as a remote on the server, and running git pull by hand
or from a cron job, and it doesn’t require your workstation
to be accessible by ssh.)

Notes
First, the work tree () must
be writable by the user who runs the hook (or the user needs
sudo access to run git checkout -f, or something similar).

Also, the work tree does not need to correspond exactly
to your DocumentRoot. Your repository may represent only
a subdirectory of it, or even contain it as a subdirectory.

In the work tree, you will need to set the environment
variable to the path to before you can
run any git commands (e.g. git status).

Setting to “ignore” on the
server eliminates a warning issued by recent versions of
git when you push an update to a checked-out branch on
the server.

You can push to more than one remote repository by
adding more URLs under the [remote "web"] section in
your .

[remote "web"]

There are also other hooks. See githooks(5) [hn.my/
githooks] for details. For example, you could use pre-receive
to accept or deny a push based on the results of an HTML
validator. Or you could do more work in the post-receive
hook (such as send email to co-maintainers; see contrib/
hooks/post-receive-email).

I wrote this after reading Daniel Miessler’s piece, “Using
Git to Maintain Your Website [hn.my/gitmaintain].” His
setup is straightforward: push to a bare repository on the
server and pull the changes into a second clone that is used
as the DocumentRoot. My implementation has the same
effect, but there are fewer moving parts, and is far
from the DocumentRoot.

Abhijit Menon-Sen is a freelance Unix programmer in New Delhi,
India. He switched from Perforce to Git some years ago, and enjoys
helping people to understand Git better.

Reprinted with permission of the original author. First appeared in hn.my/gitman.

http://hn.my/githooks
http://hn.my/githooks
http://hn.my/gitmaintain
http://hn.my/gitman

